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Solar Eruptions

* Solar flares, eruptive prominences, and coronal
mass ejections;

* The energy driving the eruption 1s stored 1n the
coronal magnetic field beforehand;
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Magnetic Field in the Universe

Most of the universe is in the form of a plasma threaded by a
magnetic field.
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Magnetic Field in the Universe

 Most of the universe i1s in the form of a plasma threaded by a
magnetic field.
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Magnetic Field in the Universe

* Most of the universe is in the form of a plasma threaded by a
magnetic field.

» Strength of seed field: 10-21 ~ 10-1° G,
undetectable:

» Dynamo process in interstellar space
amplifies the seed field to the strength of 10-7
~ 10-¢ G, detectable;

» Dynamo process inside the star further
amplifies the magnetic field up to ~10° G.



Magnetic Reconnection

* Most of the universe is in the form of a plasma threaded by a
magnetic field.

* When twisted or sheared, the field lines may break and reconnect
rapidly, converting magnetic energy into heat and kinetic energy.
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Results of Magnetic Reconnection

* Most of the universe is in the form of a plasma threaded by a
magnetic field.

* When twisted or sheared, the field lines may break and reconnect
rapidly, converting magnetic energy into heat and kinetic energy.

* Magnetic reconnection 1s at the core of many dynamic
phenomena in the universe, such as solar eruptions, geomagnetic
substorms, tokamak disruptions, and disruptive processes in the
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Results of Magnetic Reconnection
* Most of the universe is in the form of a plasma threaded by a
magnetic field.

* When twisted or sheared, the field lines may break and reconnect
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Results of Magnetic Reconnection
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Results of Magnetic Reconnection

* Most of the universe is in the form of a plasma threaded by a
magnetic field.

* When twisted or sheared, the field lines may break and reconnect
rapidly, converting magnetic energy into heat and kinetic energy.

Giant flare from magnetars (Meng et al. 2014, 2025)
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Modes of Magnetic Reconnection

Most of the universe is in the form of a plasma threaded by a
magnetic field.

When twisted or sheared, the field lines may break and reconnect
rapidly, converting magnetic energy into heat and kinetic energy.

Magnetic reconnection 1s at the core of many dynamic
phenomena in the universe, such as solar eruptions, geomagnetic
substorms, tokamak disruptions, and disruptive processes in the
other astrophysical environments of the magnetized plasma.

Fashions of magnetic reconnection extensively studied include
Sweet-Parker (Ma ~ Ry 12), Petschek (Ma ~ 1/InRy,), Hall (Ma ~
di/L, Malyshkin 2009), and turbulence (Ma ~ R, 316, Lazarian &
Vishniac 1999; M, ~ 0.01, Bhattacharjee et al. 2009).



Theories/Models of CME/Flare Current Sheets
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Role of Reconnection 1n Eruptions
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Acceleration d?h/df (10° m/s) Speed dh/dt (10° km/s) Height & (solar radius)

Power P (103Oerg/ s)
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Dynamical Properties of CMEs: Theory and Observations
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Correlations of CMEs to Flares

(Zhang et al. 2002; Zhou et al. 2003; Lin 2004; Youssef 2012)
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Multiple Scale Features & Complex Structures of the Current Sheet
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Multiple Scale Features & Complex Structures of the Current Sheet
Mei et al. (2012, 2017), Ni et al. (2015), Ye et al. (2019, 2023)
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Fine structures of CS and
the dynamic feature of
magnetic reconnection

The half-width w(solid line) near the PX-
point, decrease to about 7.5x10-3 at time
=26.81, when the first island appearing.

Then wgradually decreases to the minimum
value 2.5x10-3 and it subsequently fluctuates
around this minimum value.
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Current Sheet and Reconnection 1n 3D

@ 3D solar-flare model

2D configuration on X0

AIA 131 [DN pixel=* s7]
AA 131 [DN pixel* s71]

e ion
downflow

region

12
Shrinking (@
magnetic
field line 10

o

yiLy)

Shen et al., 2022

AlA 131 [DN pixel~t 57]

s

Wang et al., 2023

GOES SXR flux [107® Watts m=2]

o

Solar surface

@

t[min]

density (1.6-15 g/cm"3)
density (1.6e-15 g/cm*3)

Magnetic Field Strength(G}
/1.0e-02 0.050.102 051 2 1

| e ¢ —

Shibata et al., 2023
Ye etal., 2023




Current Sheet and Reconnection 1n 3D

AIA 131 2011—-10-22 12:05:35 UT

Yan et al. (2018)
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Giant Flares from Magnetar

@ Mark A, Garlick / space-art.co.uk




Giant Flares from Magnetar
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Giant Flares from Magnetar

A Criterion




Giant Flares from Magnetar

* Whether a magnetar could produce giant flare 1s governed
by many issues, including the magnetic field on the star
surface and the total mass that could be ejected.

a: Equil. height of the ejecta
u: Relative stregnth of BG-field

Different colors are for the
logarithm of # = GMm/(R?B,)?
with G the gravity constant, m the
mass of ejecta, and B, the initial
BG-field.

Evolution of a vs. u continues
monotonously until log(n) < -—

0.32. This indicates the loss of
equilibrium occurring for a certain

0.0 0.2 0.4 0.6 0.8 1.0 range of 7.




Giant Flares from Magnetar
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Summary

The solar eruption results from the conversion of
magnetic energy into heating, bulk motion of the flaring
plasma, and energetic particles;

Magnetic reconnection 1s the key in the second stage for
energy conversion to drive the evolution;

The umiverse fills with magnetic field and plasma,
interactions of magnetic field and plasma may result in
similar energy conversion fashion;

The way constructing the solar eruption model has been
successfully used for the episodic jet from the BH-
accretion disk system, and the giant flare from magnetars;

More applications are expected.
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