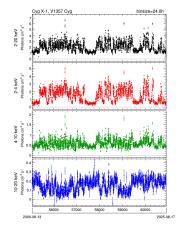
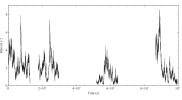
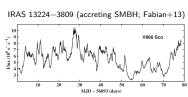
A simple introduction to Fourier X-ray timing


Wenda Zhang

wdzhang@nao.cas.cn National Astronomical Observatories, Chinese Academy of Sciences Einstein Probe Science Center


August 20th, 2025


Motivation

- Many astronomical objects, especially accreting systems, are highly variable systems
- ▶ We a mathematical tool to extract timing info

 $\mathsf{Cyg}\ \mathsf{X}\text{-}\mathsf{1}\ \mathsf{(accreting}\ \mathsf{stellar}\text{-}\mathsf{mass}\ \mathsf{BH};\ \mathsf{MAXI}\mathsf{)}$

V866 Sco (accreting protostar; Scaringi+15)

Fourier transform

► Fourier transform:

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$
.

► And the inverse transform:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{i\omega t} d\omega.$$

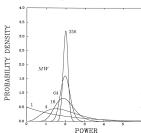
which says that a function of time can be seen as superposition of periodic functions of different variability frequencies

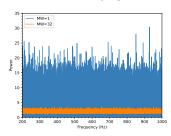
Discrete Fourier Transform


- From astronomical observations, we always obtain discrete time series instead of continuous ones
- ► Consider an X-ray observation, with N time bins, time resolution dt, counts in the k-th bin x_k
- To apply Fourier analysis, we need to discrete the Fourier transformation (Discrete Fourier Transform, DFT):

$$a_j = \sum x_k e^{2\pi i j k/N}, \ j = -N/2, \cdots, N/2, \ \nu_j = j/Ndt : \nu_{\min} = 1/Ndt, \ \nu_{\max} = 1/2dt.$$

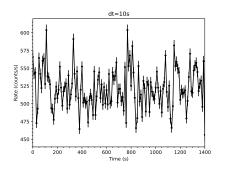
▶ a_j is complex and contains both the variability amplitude and phase at the frequency ν_j . If we only care about the variability amplitude, we compute the square of a_j to obtain the power spectral density (PSD):


$$P_j = |a_j|^2$$
.

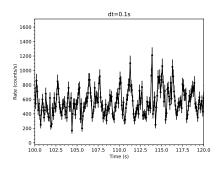

- ► Two commonly adopted PSD normalization:
 - ▶ Leahy normalization: $P_j = \frac{2}{N_{\rm tot}} |a_j|^2$.
 - rms normalization: $P_j = \frac{2Nd\hat{t}}{N_{c.b.}^2} |a_j|^2$.

Power statistics

- If x_k follows Poisson statistics and are un-correlated, then under the Leahy normalization, P_j follows the χ^2 distribution with 2 degree of freedoms (dof); $\bar{P}_j = 2$. This is known as the white noise (noise independent of frequency)
- $\blacktriangleright \chi_2^2$ distribution is very broad and therefore the PSD is noisy. In practice we usually
 - ▶ split time series into *M* segments, and average PSD
 - rebin the PSD to average over W consecutive frequency bins
 - the power follows a χ^2_{2MW} distribution scaled by 1/MW



 χ^2 dist. of various dof: van der Klis 89


Pulsation search using powspec in a NICER dataset

Dataset

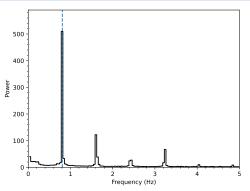
▶ ni3602020701_0mpu7_cl.evt.gz: the event list of a NICER observation of Her X-1, an accreting X-ray pulsar with a spin period of \sim 1.24 s

Lightcurve of Her X-1

Lightcurve of Her X-1, 0.1s time resolution

Pulsation search using powspec in a NICER dataset (exercise)

Pulsation search

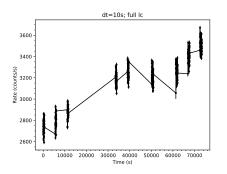

- 1. Extract source 0.5-10 keV event using *xselect*
- 2. Perform barycentric correction using barycorr
 barycorr infile=herx1_05-10.evt \
 outfile=herx1_05-10_barycorr.evt \
 orbitfiles=ni3602020701.orb ra=254.4575 dec=35.3424 \
 barytime=yes
- 3. Computing PSD using powspec
 powspec cfile1=herx1_05-10_barycorr.evt \
 normalization=1 dtnb=4e-4 window=- nbint=65536 \
 nintfm=INDEF rebin=0 outfile="" plot=yes plotdev=/xw

powspec parameters

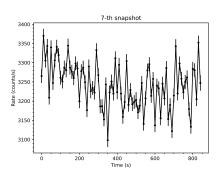
powspec parameters

- cfile1: input event file, lightcurve file, or a file list
- normalization: switch for normalization. 1(-1) and 2(-2) for Leahy and rms normalization, respectively. If negative, the white noise is subtracted.
- dtnb: the duration of newbin for timing analysis. Should be integer multiple of the intrinsic time resolution.
- ▶ nbint: the number of newbin in a segment
- ▶ nintfm: the number of segments in a frame
- rebin: positive: linear rebin; negative: logarithm rebin; 0: no rebin

PSD of Her X-1



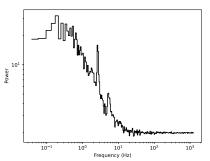
- ► A sharp peak at 1/1.24 Hz clearly seen (also harmonics), demonstrating the power of Fourier analysis
- Significance of the peak can be estimated knowing the probability of the white noise
- ► For pulsars in binary, extra time-delay due to binary motion has to be taken into account (see e.g. Ransom S. M. 2001, Ph.D. Thesis)


Fourier analysis for aperiodic variability

Dataset

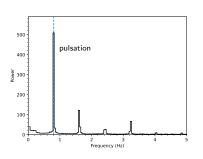
▶ ni4133010103_0mpu7_cl.evt.gz: the event file of a NICER observation of GX 339-4, an accreting stellar-mass black hole

The full lightcurve; 10-s bin

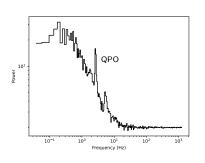

Lightcurve of the 7-th snapshot

Fourier analysis for aperiodic variability (exercise)

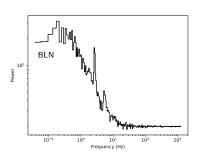
Producing PSD with powspec

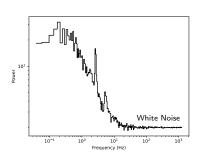

- 1. Extract the 0.5-10 keV event list of the 7-th snapshot using *xselect*
- 2. Computing PSD using *powspec*

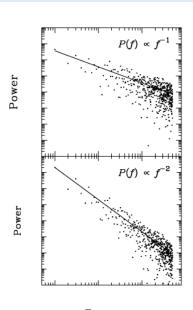
```
powspec cfile1=gti7.evt normalization=1 dtnb=4e-4 \
window=- nbint=65536 nintfm=INDEF rebin=-1.03 \
outfile=gx339.fps plot=yes plotdev=/xw
```



► Pulsation (narrow peak)

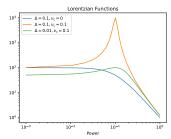

- Quasi-periodic oscillation (QPO; broad peak)
- ▶ Band-limited noise (BLN; constant at low frequencies, rapid decay above a critical frequency)
- White noise (constant power with respect to frequency)
- Red noise ("red" since higher power towards lower frequencies)

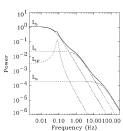

- ► Pulsation (narrow peak)
- Quasi-periodic oscillation (QPO; broad peak)
- Band-limited noise (BLN; constant at low frequencies, rapid decay above a critical frequency)
- White noise (constant power with respect to frequency)
- Red noise ("red" since higher power towards lower frequencies)


- ► Pulsation (narrow peak)
- Quasi-periodic oscillation (QPO; broad peak)
- Band-limited noise (BLN; constant at low frequencies, rapid decay above a critical frequency)
- White noise (constant power with respect to frequency)
- ▶ Red noise ("red" since higher power towards lower frequencies)

- ► Pulsation (narrow peak)
- Quasi-periodic oscillation (QPO; broad peak)
- Band-limited noise (BLN; constant at low frequencies, rapid decay above a critical frequency)
- White noise (constant power with respect to frequency)
- Red noise ("red" since higher power towards lower frequencies)

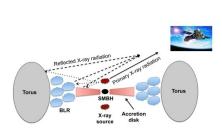
- ► Pulsation (narrow peak)
- Quasi-periodic oscillation (QPO; broad peak)
- Band-limited noise (BLN; constant at low frequencies, rapid decay above a critical frequency)
- White noise (constant power with respect to frequency)
- Red noise ("red" since higher power towards lower frequencies)

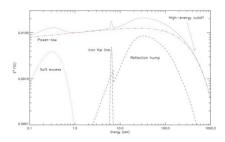



PSD fitting

- ► Having produced the PSD, we need to measure the parameters of different components
- ► In the X-ray binary community, the most popular way to fit the PSD is using the Lorentzian function to fit BLN and QPO in a unified fashion

$$L(\nu) \propto \frac{1}{\Delta^2 + (\nu - \nu_c)^2}$$
.


▶ In practice, the PSD can be fit with Xspec, Stingray, or any fitting tool you like



Fourier time-lag analysis

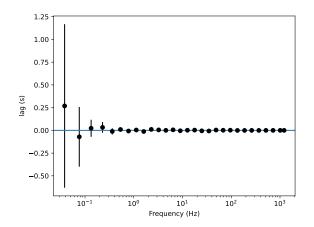
- ► Time-lag between different spectral component contains valuable info
- ► For instance, the time-lag between hard X-ray emission and the reflection component helps us constrain the coronal geometry

Cartoon of AGN disc/corona. Credit: R. Ricci

AGN X-ray spectral components. Credit: R. Ricci

Fourier time-lag analysis

► Frequency-dependent time-lags between two time series $f_1(t)$ and $f_2(t)$ can be computed by:


$$\tau(\omega) = \frac{\arg(F_1(\omega)F_2^*(\omega))}{\omega}$$
,

where $F_1(\omega)$ and $F_2(\omega)$ are the DFT of f_1 and f_2 , respectively, arg means argument, and * denotes complex conjugation.

Computing time-lags with Stingray:

Fourier time-lag analysis

- ▶ We compute the 4-10 keV vs. 2-4 keV time lag
- No significant lag is detected in this case

4-10 keV vs. 2-4 keV time lag, for the 7-th snapshot of the GX 339-4 dataset

References

- ► van der Klis, M. 1989, Fourier techniques in X-ray timing, https://ui.adsabs.harvard.edu/abs/1989ASIC..262. ..27V/abstract
- ▶ Bachetti, M. & Huppenkothen, D. 2022, Fourier Domain, arXiv:2209.07954, https://ui.adsabs.harvard.edu/abs/ 2022arXiv220907954B/abstract