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Motivation

> Many astronomical objects, especially accreting systems, are

highly variable systems

» We a mathematical tool to
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Fourier transform

» Fourier transform:
_ [Foo —iwt
Flw) = [T ft)e “dt.
» And the inverse transform:
ft) = £ [T Fw)e¥tdw.

which says that a function of time can be seen as

superposition of periodic functions of different variability

frequencies



Discrete Fourier Transform
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From astronomical observations, we always obtain discrete
time series instead of continuous ones
Consider an X-ray observation, with N time bins, time
resolution dt, counts in the k-th bin x,
To apply Fourier analysis, we need to discrete the Fourier
transformation (Discrete Fourier Transform, DFT):

aj =Y x& N j=—N/2,.--- N2,

vj = j/Ndt : vpin = 1/Ndt, vmax = 1/2dt.
aj is complex and contains both the variability amplitude and
phase at the frequency v;. If we only care about the variability
amplitude, we compute the square of a; to obtain the power
spectral density (PSD):
Py = lajl*.

Two commonly adopted PSD normalization:

» Leahy normalization: P; = NL

» rms normalization: P; = A



Power statistics

» If x, follows Poisson statistics and are un-correlated, then
under the Leahy normalization, P; follows the x? distribution
with 2 degree of freedoms (dof); P; = 2. This is known as the
white noise (noise independent of frequency)

» 3 distribution is very broad and therefore the PSD is noisy.
In practice we usually

» split time series into M segments, and average PSD
» rebin the PSD to average over W consecutive frequency bins
> the power follows a x3,,,, distribution scaled by 1/ MW
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Pulsation search using powspec in a NICER dataset

Dataset

> ni3602020701_0mpu7_cl.evt.gz: the event list of a NICER
observation of Her X-1, an accreting X-ray pulsar with a spin

period of ~1.24s
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Pulsation search using powspec in a NICER dataset
(exercise)

Pulsation search

1. Extract source 0.5-10 keV event using xselect

2. Perform barycentric correction using barycorr
barycorr infile=herxl_05-10.evt \
outfile=herx1_05-10_barycorr.evt \
orbitfiles=ni3602020701.0rb ra=254.4575 dec=35.3424 \
barytime=yes

3. Computing PSD using powspec
powspec cfilel=herxl_05-10_barycorr.evt \
normalization=1 dtnb=4e-4 window=- nbint=65536 \
nintfm=INDEF rebin=0 outfile="" plot=yes plotdev=/xw



powspec parameters

powspec parameters

>
>

v

cfilel: input event file, lightcurve file, or a file list

normalization: switch for normalization. 1(-1) and 2(-2) for
Leahy and rms normalization, respectively. If negative, the
white noise is subtracted.

dtnb: the duration of newbin for timing analysis. Should be
integer multiple of the intrinsic time resolution.

nbint: the number of newbin in a segment
nintfm: the number of segments in a frame

rebin: positive: linear rebin; negative: logarithm rebin; 0: no
rebin



PSD of Her X-1
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» A sharp peak at 1/1.24 Hz clearly seen (also harmonics),
demonstrating the power of Fourier analysis

» Significance of the peak can be estimated knowing the
probability of the white noise

» For pulsars in binary, extra time-delay due to binary motion
has to be taken into account (see e.g. Ransom S. M. 2001,
Ph.D. Thesis)



Fourier analysis for aperiodic variability

Dataset

» ni4133010103_0mpu7_cl.evt.gz: the event file of a NICER
observation of GX 339-4, an accreting stellar-mass black hole

dt=10s; full Ic 7-th snapshot
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Fourier analysis for aperiodic variability (exercise)

Producing PSD with powspec

1. Extract the 0.5-10 keV event list of the 7-th snapshot using
xselect
2. Computing PSD using powspec

powspec cfilel=gti7.evt normalization=1 dtnb=4e-4 \
window=- nbint=65536 nintfm=INDEF rebin=-1.03 \
outfile=gx339.fps plot=yes plotdev=/xw
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Features in PSD

» Pulsation (narrow peak)
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Features in PSD

» Quasi-periodic oscillation
(QPO; broad peak)
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Features in PSD

» Band-limited noise
(BLN; constant at low
frequencies, rapid decay
above a critical
frequency)




Features in PSD
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» White noise (constant
power with respect to
frequency)



Features in PSD

» Red noise (“red” since
higher power towards
lower frequencies)
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PSD fitting

» Having produced the PSD, we need to measure the
parameters of different components

» In the X-ray binary community, the most popular way to fit
the PSD is using the Lorentzian function to fit BLN and QPO
in a unified fashion

L(v) A2+(i_7,jc)2-
» In practice, the PSD can be fit with Xspec, Stingray, or any
fitting tool you like
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Fourier time-lag analysis

> Time-lag between different spectral component contains
valuable info

» For instance, the time-lag between hard X-ray emission and
the reflection component helps us constrain the coronal
geometry
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Fourier time-lag analysis

» Frequency-dependent time-lags between two time series f1(t)
and f(t) can be computed by:
arg(F1(w)F3(w))

T(w) = > :
where Fi(w) and Fa(w) are the DFT of f; and f,, respectively,

arg means argument, and * denotes complex conjugation.

» Computing time-lags with Stingray:
from stingray.fourier import avg_cs_from_events
from stingray import AveragedCrossspectrum, EventList
# Note that event_ref is the reference band
event_ref = EventList.read("gti7_2-4.evt", "hea")
event_sub = Eventlist.read("gti7_4-10.evt", "hea")
cs = AveragedCrossspectrum.from_events(event_sub,

event_ref, segment_size=26.2144, dt=4e-4)

cs_reb = cs.rebin_log(0.4)
lag, lag_e = cs_reb.time_lag()



Fourier time-lag analysis

> We compute the 4-10 keV vs. 2-4 keV time lag

» No significant lag is detected in this case
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