类超新星现象可能的X射线辐射特征及 其来源

俞云伟

华中师范大学天体物理研究所

超新星激波突破 (激波暴)

核坍缩型超新星爆发和激波突破

核坍缩型超新星爆发和激波突破

Nakar & Sari 2010

SN 2008D激波突破的X射线辐射

2008 Jan 9

伽马射线暴成协超新星GRB060218/SN 2006AJ

Wang, Li, Waxman & Meszaros 2007

统计性质和EP探测率

ХТ	$t_{R/c}$ (s)	$\frac{L_{\text{peak}}}{(10^{44} \text{ erg s}^{-1})}$	$\frac{E_{\rm SBO}}{(10^{46} {\rm erg})}$	$\begin{array}{c} R_t \\ (R_{\odot}) \end{array}$
161028	42	$3.39^{+2.40}_{-1.03}$	$0.3^{+0.2}_{-0.1}$	14
151219	90	$32.88^{+53.76}_{-11.00}$	$2.4^{+4.0}_{-0.8}$	24
110621	380	$0.39^{+7.45}_{-0.22}$	$0.5^{+9.5}_{-0.3}$	150
030206	360	$172.47\substack{+28.72\\-23.77}$	$79.0^{+13.2}_{-10.9}$	71
070618	70	$48.78\substack{+17.05 \\ -10.68}$	$7.6^{+2.6}_{-1.7}$	22
060207	110	$6.44\substack{+2.74\\-2.03}$	$2.2\substack{+0.9\-0.7}$	36
100424	5600	$0.05\substack{+0.12\\-0.01}$	$1.0^{+2.6}_{-0.3}$	2136
151128	1800	$1.83\substack{+56.98\\-1.08}$	$2.5^{+78.1}_{-1.5}$	524
050925	850	$0.21\substack{+0.14 \\ -0.08}$	$0.3^{+0.2}_{-0.1}$	282
160220	750	$0.51\substack{+0.23 \\ -0.12}$	$0.6\substack{+0.3\\-0.2}$	249
140811	1800	$0.93\substack{+4.64 \\ -0.41}$	$2.9^{+14.6}_{-1.3}$	494
040610	3200	$0.32\substack{+0.09\\-0.07}$	$1.8\substack{+0.5 \\ -0.4}$	919

Sun et al, 2022, ApJ, 927, 224

•预计EP每年能够探测10到几十个超新星激波突破事件

相互作用超新星X射线辐射

激波相互作用和电子的韧致辐射

现有超新星X射线观测

- 目前31颗超新星被多次探测到X射线辐射,主要来自于Chandra、Swift-XRT、
 XMM-Newton和NuSTAR等望远镜的发现。
- IIn超新星的X-ray辐射平均明显高于所 有其他类型的超新星:

 $L_X \sim 10^{41} - 10^{42} \text{ erg s}^{-1}$

• 来自其他类型的超新星(IIL, IIP等)的 X-ray辐射相对较弱:

$$L_X \lesssim 10^{40} \ {\rm erg \ s^{-1}}$$

Brunton et al, 2023, ApJ, 947, 42

IIN型超新星X射线辐射特点

- 在所有超新星中具有最高的X射线光度,并具有相当大的范围
- 光变曲线的形态具有多样性,一般为快速衰减
- 早期光谱显示其辐射温度常常在Chandra和XMM能段之外 (>10keV)
- 几年内的中性氢密度> 10²¹ cm⁻²
- 光谱中常具有Fe、Si、S、Mg等超出特征

不同前身星系统的星风环境

•大质量恒星

- $(M < 0.001 \ M_{\odot} / yr)$
- 双星系统相互作用 . (*M* < 0.1 *M* ⊙ /yr)
- 亮蓝变星的Giant eruptions

 $(M < 10 M_{\odot} / yr)$

Smith 2017

各向异性和中心引擎 (喷流)

Maund et al. 2009

超亮超新星和快变蓝色暂现源

超亮超新星 (SLSN) 和快变蓝色暂现源 (FBOT)

统计属性和起源

Ultra-Stripped Supernova in Close Binary

超亮超新星X射线观测现状

•目前只在一例SLSN中发现了X射线辐射

Yao et al, 2022, ApJ, 934, 104

快变蓝色暂现源X射线观测现状

•目前一共发现5例FBOT存在X射线辐射,最具代表性的是AT 2018cow 代表性的

Yao et al, 2022, ApJ, 934, 104

EP对FBOT的X-RAY的探测率估计

$$\dot{N}_{\rm det} = \frac{\Omega}{3} D_{\rm max}^3 \mathcal{R} p_s$$

AT 2018cow-like的事件率 $\mathcal{R} = 2.1 - 420 \text{ Gpc}^{-3} \text{ yr}^{-1}$

			$\dot{N}_{\rm det}$ if	$\dot{N}_{\rm det}$ if	$\dot{N}_{\rm det}$ if
Survey	f_{-13}	D_{\max}	$\mathcal{R} = 2.1$	$\mathcal{R} = 70$	$\mathcal{R} = 420$
SRG/eROSITA	1.8	373	0.080	2.7	16
		964	1.7	57	340
Einstein Probe	20	112	0.012	0.41	2.5
		289	0.21	7.1	43

Note. D_{max} is given in Mpc. The values in the first and third rows assume an X-ray light-curve shape similar to AT2018cow. The values in the second and fourth rows assume a conservative light-curve shape similar to AT2020mrf, and therefore the derived \dot{N}_{det} should be taken as lower limits.

Yao et al, 2022, ApJ, 934, 104

AT 2018COW 的X射线辐射特征的理论解释

▼ • 各向异性分布的抛射物与致密星周物 质相互作用

早期宽波段X射线能谱可由康普顿化盘
 反射模型解释

Margutti et al, 2019, ApJ, 872, 18

白矮星相关爆发过程的X射线辐射

AT 2018COW 的X射线辐射特征的理论解释

YWY, Chen, Wang, 2019, ApJL, 870, L23

AT 2018COW 的X射线辐射特征的理论解释

AT 2018COW 的X射线辐射中的 QPO信号

• 224Hz的QPO说明其中 心存在一个质量小于 850太阳质量的致密 天体

Figure 1: (a) Average X-ray PDS of AT2018cow showing evidence for a quasi-periodicity near 224 Hz. This PDS was computed by averaging 105 256-second soft X-ray (0.25-2.5 keV) light curves sampled at 1/2048 s. The resulting PDS was further re-binned by a factor of 2048

2022NatAs...6..249P

脉冲星风驱动的激波突破

WuYuLi_Universe8(2022)633

IA型超新星的激波突破X射线辐射

持续时间~0.1s, EP的可探 测距离约1Mpc, 5Mpc以 内爆发数目不足0.01/Year。

IA型超新星的相互作用X射线辐射

持续时间~1.5 hr for RG ~5 min for MS EP的可探测距离约90 Mpc, 100 Mpc以内SNela 的爆发数目约100/Year。

Kasen 2010

富钙超新星/暂现源

Chen et al. 2020, ApJL, 889, L6

富钙超新星/暂现源

SN 2019ehk, 一颗爆发于漩 涡星系的富钙超新星/暂现 源。爆发前的HST图像数据 显示其前身星系统低于 I0Msun, 意味着可能起源于 低质量的HeCOWD + CO WD双星系统。

富钙超新星/暂现源的X射线辐射

Jacobson-Galan et al. 2020

总结: 类超新星领域的EP科学目标

- 通过观测超新星激波突破限制前身星属性
- 通过观测超新星相互作用的X射线辐射限制暴周环境
- 检验超亮超新星和快变蓝色暂现源的起源
- 探索白矮星双星系统的相互作用和爆发过程,确定la型超新星等爆发现象的物理起源